Force-induced diffusion in microrheology.

نویسندگان

  • Ch J Harrer
  • D Winter
  • J Horbach
  • M Fuchs
  • Th Voigtmann
چکیده

We investigate the force-induced diffusive motion of a tracer particle inside a glass-forming suspension when a strong external force is applied to the probe (active nonlinear microrheology). A schematic model of mode-coupling theory introduced recently is extended to describe the transient dynamics of the probe particle, and used to analyze recent molecular-dynamics simulation data. The model describes non-trivial transient displacements of the probe before a steady-state velocity is reached. The external force also induces diffusive motion in the direction perpendicular to its axis. We address the relation between the transverse diffusion coefficient D(perpendicular) and the force-dependent nonlinear friction coefficient ζ. Non-diffusive fluctuations in the direction of the force are seen at long times in the MD simulation, while the model describes cross-over to long-time diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Driven motion of colloids in active microrheology

In active microrheology, a strong external force is applied to a colloidal probe immersed in a complex fluid, so that among other quantities the nonlinear force-velocity relation can be measured. It provides information on the local viscoelastic properties of the complex fluid or soft solid. Generally, in dense fluids, the probe’s friction coefficient decreases strongly with increasing force [1...

متن کامل

Microrheology of complex fluids

The field of microrheology is concerned with how materials store and dissipate mechanical energy as a function of length scale. Recent developments in the theory and instrumentation of the microrheology of complex fluids are reviewed. Equal emphasis is given to the physical phenomena probed, advances in instrumentation, and specific experimental systems in which this field has already had an im...

متن کامل

Single particle motion in colloidal dispersions: a simple model for active and nonlinear microrheology

The motion of a single Brownian probe particle subjected to a constant external body force and immersed in a dispersion of colloidal particles is studied with a view to providing a simple model for particle tracking microrheology experiments in the active and nonlinear regime. The non-equilibrium configuration of particles induced by the motion of the probe is calculated to first order in the v...

متن کامل

Finite-size effects in intracellular microrheology

We propose a model to explain finite-size effects in intracellular microrheology observed in experiments. The constrained dynamics of the particles in the intracellular medium, treated as a viscoelastic medium, is described by means of a diffusion equation in which interactions of the particles with the cytoskeleton are modelled by a harmonic force. The model reproduces the observed power-law b...

متن کامل

Single-particle motion in colloids: force-induced diffusion

We study the fluctuating motion of a Brownian-sized probe particle as it is dragged by a constant external force through a colloidal dispersion. In this nonlinearmicrorheology problem, collisions between the probe and the background bath particles, in addition to thermal fluctuations of the solvent, drive a long-time diffusive spread of the probe’s trajectory. The influence of the former is det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 24 46  شماره 

صفحات  -

تاریخ انتشار 2012